看板 Math 關於我們 聯絡資訊
※ 引述《superconan (超級柯南)》之銘言: : What are the eigenvalues and eigenvectors of a projection ? A reflection ? : 目前我知道投影矩陣 P = A(A^TA)^(-1)A^T 且 P^2 = P : Let t is an eigenvalue of P and v is an eigenvector of P, then Pv = tv. — (1) : Pv = P^2v = P(Pv) = P(tv) = t(Pv) = t(tv) = t^2v. — (2) : By (1), (2) => t^2 = t => t^2 - t = 0 => t(t-1) = 0 => t = 0, 1 : 其他的就不知道怎麼求了 : 麻煩高手解惑,謝謝~ A projection operator on a vector space V determines a direct sum decomposition of V into ker P and Im P. Since P^2=P, we see that P(Pv)=Pv and P[(I-P)v]=0. Therefore vectors in Im P are all eigenvectors of P corresponding to eigenvalue 1 while the vectors in ker P are eigenvectors of P corresponding to eigenvalue 0. This also shows that P is diagonizable. (t^2-t is the minimal polynomial of P) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 128.120.178.219