推 mqazz1 :謝謝!! 06/07 14:44
※ 編輯: tibicos 來自: 111.252.14.248 (06/07 19:54)
※ 引述《mqazz1 (無法顯示)》之銘言:
: let A be an 8*5 matrix of rank 3, and let b be a nonzero vector in N(A^T)
: (1) show that the system Ax=b must be inconsistent
: (2) how many least squares solutions will the system Ax=b have? explain
: 請問有人會這兩題的證明嗎?
: 可以指點一下嗎 謝謝!!
(1) b is in N(A^T)
-> A^T(b)=0,
<-> b^T(A)=0; <-> b^T(A)x=b^T(Ax)=b^T(b)=||b||^2 >0 (because b is nonzero)
so no x can be found so that b=Ax;
(2) If p=Ax is the projection of b onto C(A)
(column space of A, the range of A),
then (A^T)(b-Ax)=0 -> A^T(Ax)=A^T(b)=0;
so p=Ax is in N(A^T)
<-> A^T(Ax)=0; -> (x^T)(A^T)(Ax)=0; -> ||Ax||^2=0; -> p=0;
therefore the projection p=0, the least squares solution x is in N(A)
with a degree of freedom 5-3=2
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 163.22.24.227