看板 Math 關於我們 聯絡資訊
※ 引述《linshihhua (linshihhua)》之銘言: : let A be a linear transformation definde on a finite dimension vector space V : prove that dim(ker(A+I))+dim(ker(A-I))=dim(V) if and only if A^2=I (i) A^2=I then its minimal polynomial is x-1, x+1 or (x-1)(x+1) Hence, A can be diagonalized, and its eigenvalues are 1 or -1 done. (ii) dim(ker(A+I))+dim(ker(A-I))=dim(V) assume ker(A+I)=Span{u1,u2,...,uk} and V=Span{u1,u2,...,uk,u_{k+1},...,u_n} if (A+I)u=0, (A-I)u=0, then u=0 hence ker(A+I)∩ker(A-I)={0} but dim(ker(A-I))=n-k hence, ker(A-I)=Span{u_{k+1},...,u_n} then ker(A+I)+ker(A-I)=V then (A+I)(A-I)=0, done. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.104.88.218