作者Justin258 (Justin)
看板Math
標題[機統] Uniformly Distribution
時間Sat Jun 11 13:12:46 2011
題目出處:機率課堂上,某次考試的題目
Let X,Y be independently uniformly distributed over (0,4). Define Z = √X, and
W = min(X,Y).
(a) Find the distribution function of Z.
(b) Find E(Z)
(c) Find the distribution function of W. [Hint:P(W<t) = 1- P(W>t)]
(d) Find E(W)
參考之解法
(a) F(t) = P(Z≦t) = P(X≦t^2) = (1/4)t^2 0 < t^2 < 4
t^2
∫ 1/4 du = (1/4)t^2 想請問 P(X≦t^2)是這樣算出來的嗎?
0 此處參考的概念或公式是什麼呢?
所以 Fz(t) = 0 t≦0
(t^2)/4 0 < t < 2
1 t≧2
2
(b) fz(t) = t/2
∴Ez = ∫ t * t/2 dt = 4/3 這是自己算的,不知道有沒有錯?
0
希望可以請版友幫忙解釋一下,上面的符號、公式所表達的概念
或是我可以參考課本的哪些章節以便弄清楚自己的盲點
(參考用書 Fundamentals of probability 3rd ,作者SAEED GHAHRAMANI) (閃電本)
感謝幫忙!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.113.68.146
推 boss0405 :(a)x<t^2的機率就pdf積分範圍從0~t^2(b)正確 06/11 14:11
→ Justin258 :(a)小題是因為 X 為 (0,4)的uniform distribution 06/12 08:43
→ Justin258 :所以density function f(t)為 1/4嗎 ? 06/12 08:45
→ Justin258 :(在uniform function X下每點的機率都是1/4 ) 06/12 08:45
→ Justin258 :不知道這樣解讀有沒有錯誤呢? 06/12 08:46
推 boss0405 :應該說pdf是1/4pdf不是機率積分之後才是~ 06/13 00:25