看板 Math 關於我們 聯絡資訊
※ 引述《JohnMash (Paul)》之銘言: : ※ 引述《shooter31 (上揚的弧線)》之銘言: : : For what values of the constants b and c will the following limit exist and : : be equal to 1? : : n x^3 + bx^2 + cx : : lim ∫ ------------------- dx : : n→∞ -n x^2 + x +1 : x^3 + bx^2 + cx = x(x^2+x+1)+d(x^2+x+1)+e(2x+1)+f : then (x^3+bx^2+cx)/(x^2+x+1)=x+d+e(2x+1)/(x^2+x+1)+f/(x^2+x+1) : ^^^^^^ : trick : then d must be 0 (why?) 而且 f=-e 因為常數項為 0. 且∫(2x+1)/(x^2+x+1) dx = 0, 由-∞積至∞ : ∫[-n,n] 1/(x^2+x+1) dx : = ∫[-n,n] 1/((x+1/2)^2+3/4) dx : =∫[-n+1/2,n+1/2] 1/(u^2+3/4) du : =2∫[0,n-1/2] 1/(u^2+3/4) du + ∫[n-1/2,n+1/2] 1/(u^2+3/4) du d(arctan((2/√3)(x+1/2))/dx = (2/√3)/(1 + (4/3)(x+1/2)^2) = (√3/2)/(x^2 + x +1) 故 ∫f/(x^2+x+1) dx = (2/√3)f arctan((2/√3)(x+1/2)) |x=-∞~∞ = (2π/√3)f = 1, f = (√3/2π) = -e x^3 + bx^2 + cx = x(x^2+x+1) - (√3/2π)(2x+1) + (√3/2π) = x^3 + x^2 + (1-√3/π)x, b = 1, c = (1 - √3/π). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 163.22.18.44