※ 引述《star250241 (tutu)》之銘言:
: http://0rz.tw/qKOdw
: prove int^x _0 xf'(x)dx = xf(x)-int^x _0 f(x)dx using taylor expansion at x = 0
: 已經在腦中想了無數次
: 請各位指教
: 謝謝~~感激!!!
x ' x
: PROVE ∫ xf (x)dx = xf(x)-∫ f(x)dx using Taylor expansion at x=0
: 0 0
(proof)
Taylor expansion for f(x) at x=0
(n)
f (0) n
f(x)=Σ------- x
n!
(n) (n)
' f (0) n x ' f (0) n+1
=> xf(x) = Σ-------- x => ∫xf(x)dx = Σ------------ x
(n-1)! 0 (n-1)!(n+1)
(n)
f (0) n+1
xf(x) = Σ-------- x
n!
(n)
x f (0) n+1
∫f(x)dx = Σ-------- x
0 (n+1)!
Substituting these into the equation
x ' x
∫xf(x)dx = xf(x) - ∫f(x)dx
0 0
yields
(n) (n) (n)
f (0) n+1 f (0) n+1 f (0) n+1
Σ------------ x = Σ--------- x - Σ-------- x
(n-1)!(n+1) n! (n+1)!
1 1 1
=> ------------- = --- - ------- -------------(*)
(n-1)!(n+1) n! (n+1)!
n
Left hand side of Eq.(*) = -------
(n+1)!
(n+1)-1 n
Right hand side of Eq.(*) = ---------- = ------- Holds !
(n+1)! (n+1)!
END !
--
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.136.105.129
※ 編輯: phs 來自: 140.112.101.4 (11/04 17:27)