看板 Math 關於我們 聯絡資訊
※ 引述《star250241 (tutu)》之銘言: : http://0rz.tw/qKOdw : prove int^x _0 xf'(x)dx = xf(x)-int^x _0 f(x)dx using taylor expansion at x = 0 : 已經在腦中想了無數次 : 請各位指教 : 謝謝~~感激!!! x ' x : PROVE ∫ xf (x)dx = xf(x)-∫ f(x)dx using Taylor expansion at x=0 : 0 0 (proof) Taylor expansion for f(x) at x=0 (n) f (0) n f(x)=Σ------- x n! (n) (n) ' f (0) n x ' f (0) n+1 => xf(x) = Σ-------- x => ∫xf(x)dx = Σ------------ x (n-1)! 0 (n-1)!(n+1) (n) f (0) n+1 xf(x) = Σ-------- x n! (n) x f (0) n+1 ∫f(x)dx = Σ-------- x 0 (n+1)! Substituting these into the equation x ' x ∫xf(x)dx = xf(x) - ∫f(x)dx 0 0 yields (n) (n) (n) f (0) n+1 f (0) n+1 f (0) n+1 Σ------------ x = Σ--------- x - Σ-------- x (n-1)!(n+1) n! (n+1)! 1 1 1 => ------------- = --- - ------- -------------(*) (n-1)!(n+1) n! (n+1)! n Left hand side of Eq.(*) = ------- (n+1)! (n+1)-1 n Right hand side of Eq.(*) = ---------- = ------- Holds ! (n+1)! (n+1)! END ! -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.136.105.129 ※ 編輯: phs 來自: 140.112.101.4 (11/04 17:27)