看板 Math 關於我們 聯絡資訊
※ 引述《znmkhxrw (QQ)》之銘言: : lim x*lnx = ? : x→0+ Let lnx = -u then x=e^{-u} x→0+ becomes u→∞ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.104.129.200
znmkhxrw :請問一下lim x→+inf x/e^x = 0 的詳細證明是?? 07/06 09:05
znmkhxrw :用L'hospital 07/06 09:05
znmkhxrw :我的意思是 lim x→+inf f(x)/g(x) 的L'怎麼證?? 07/06 09:06
Forget it if you are not interested in mathematical analysis. -------------------------------------------------- if f(a)=g(a)=0 f(x)/g(x)=[f(x)-f(a)]/[g(x)-g(a)] =[(f(x)-f(a))/(x-a)] / [(g(x)-g(a))/(x-a)] -------------------------------------------------- if f(∞)=∞,g(∞)=∞ Let u=1/x, h(x)=1/f(x), p=1/g(x) h'(x)=-1/f^2(x) * f'(x) p'(x)=-1/g^2(x) * g'(x) then f(x)/g(x)=p(x)/h(x)=p(1/u)/h(1/u) lim_{x→∞} f(x)/g(x) = lim_{u→0+} p(1/u)/h(1/u) = lim_{u→0+} [p'(1/u) * (-1/u^2)] / [h'(1/u) * (-1/u^2)] = lim_{u→0+} p'(1/u) / h'(1/u) =lim_{x→∞} p'(x)/h'(x) =lim_{x→∞} g'(x)/f'(x) * f^2(x)/g^2(x) = lim_{x→∞} g'(x)/f'(x) * [lim_{x→∞} f(x)/g(x)]^2 hence lim_{x→∞} f(x)/g(x)=lim_{x→∞} f'(x)/g'(x) or lim_{x→∞} f(x)/g(x)=0 ※ 編輯: JohnMash 來自: 112.104.142.5 (07/06 10:34)