看板 Math 關於我們 聯絡資訊
※ 引述《znmkhxrw (QQ)》之銘言: : if f(∞)=0,g(∞)=0 : let x=1/u : lim_{x→∞} f(x)/g(x) : = lim_{u→0+} f(1/u)/g(1/u) You can take f(1/u)=p(u) and g(1/u)=q(u) when u→0+, then p(u)→0, q(u)→0 Use ORDINARY HOSPITAL's RULE lim_{u→0+} f(1/u)/g(1/u) = lim_{u→0+} p(u)/q(u) = lim_{u→0+} p'(u)/q'(u) = lim_{u→0+} [f'(1/u)*(-1/u^2)]/[g'(1/u)*(-1/u^2)] = lim_{u→0+} f'(1/u)/g'(1/u) = lim_{x→∞} f'(x)/g'(x) --------------------------------------------------------- ORDINARY HOSPITAL's RULE when u→0+, then p(u)→0, q(u)→0 We can define P(u)=p(u) when u>0 Q(u)=q(u) when u>0 and DEFINE P(0)=Q(0)=0 then lim_{u→0+} p(u)/q(u) =lim_{u→0+} P(u)/Q(u) =lim_{u→0+} [P(u)/u]/[Q(u)/u] =lim_{u→0+} [P(u)/u] / lim_{u→0+} [Q(u)/u] =P'(0+)/Q'(0+) =p'(0+)/q'(0+) =lim_{u→0+} p'(u)/q'(u) In fact, I don't like analysis. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.104.142.5 ※ 編輯: JohnMash 來自: 112.104.142.5 (07/06 12:48)