看板 Math 關於我們 聯絡資訊
Find the extreme value of f(x,y)= x^4+y^4-4xy+1 subject to the constraint x^2+y^2<=2 --------- Lagrange's Multiplier: 設F(x,y, t)=(x^4+y^4-4xy+1)+ t(x^2+y^2-k), 0 <= k <= 2 ∂F/∂x =0= 4x^3 -4y + 2tx ----(A) ∂F/∂y =0= 4y^3 -4x + 2ty ----(B) ∂F/∂t =0= x^2+y^2-k ---- y*(A)-x*(B): 4xy(x^2-y^2)+ 4(x^2-y^2) =0 4(x^2-y^2)(xy+1)=0 ┌ WHY? x^2=y^2 or xy= -1 又x^2+y^2=k, 故 (x^2, y^2)= (k/2, k/2) or [(x,y)=(1, -1), (-1, 1)] ----- case1: (x^2, y^2)=(k/2, k/2) 代入f(x,y)=k^2 /2 +/- 2k+1= (1/2) (k +/- 2)^2 -1 最大值為 (1/2)*(4)^2-1= 7 , 最小值= -1 case2: (x,y)= +/- (1, -1)時, 代入f(x,y)得7 故f(x,y)最大值為 7 (此時 (x,y)=+/-(1, -1)), 最小值為 -1 (此時 (x,y)=+/- (1,1) ) 該怎麼從 x^2=y^2 or xy= -1 and x^2+y^2=k, 推得 (x^2, y^2)= (k/2, k/2) or [[[[[[ (x,y)=(1, -1), (-1, 1)]]]]]] 後面那一個式子呢 不是只能得到 x=1/y 然後代到 x^2+y^2=k 嗎? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.24.146.2 ※ 編輯: alasa15 來自: 111.249.5.174 (09/25 15:34)