※ 引述《iloveyy (阿)》之銘言:
: a,b,c三數皆相異,且
: a^3+b^3+2(a^2+b^2)=b^3+c^3+2(b^2+c^2)=c^3+a^3+2(c^2+a^2)
: 則a+b+c=?
: 標準答案給-2
: 麻煩大家...感謝!
let f(x)=x^3+2x^2
the condition means f(a)+f(b)=f(b)+f(c)=f(c)+f(a)
<=> f(a)=f(b)=f(c) (=:k).
Thus, a,b,c are distinct roots of x^3+2x^2 -k =0.
So a+b+c = -2.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 131.215.6.212