推 profyang :推~想了一下才懂 07/15 00:30
推 profyang :等等 所以你這樣等於也證明了n必須是五的倍數? 07/15 00:41
→ Vulpix :確實會有 5|n 這個結論沒錯 07/15 00:44
推 ppia :x^4+x^3+x^2+x+1 is irred. in |R[x] ( Eisenstein 07/17 19:40
x^4+x^3+x^2+x+1 is irreducible in Q[x]
but reducible in R[x]
x^5-1=(x-1)(x^2+ax+b)(x^2+cx+d)
In mathematics, Eisenstein's criterion gives an easily checked sufficient
condition for a polynomial with integer coefficients to be irreducible over
the rational numbers.
http://en.wikipedia.org/wiki/Eisenstein's_criterion
→ ppia :criterion ), so the minimal poly. of A must be 07/17 19:40
→ ppia :(i) x-1; (ii) x^4+x^3+x^2+x+1 (iii) x^5-1. 07/17 19:41
→ ppia :The char. poly. is : (i) (x-1)^n; 07/17 19:42
→ ppia :(ii) (x^4+x^3+x^2+x+1)^(n/4) 07/17 19:43
→ ppia :(iii) (x^4+x^3+x^2+x+1)^a (x-1)^b 07/17 19:44
→ ppia :a, b are positive integers with 4a+b = n 07/17 19:44
→ ppia :Since trA = 0, (iii) with a=b is the only 07/17 19:44
→ ppia :possibility. Therefore, 5|n and 1 is an eigenvle 07/17 19:45
※ 編輯: JohnMash 來自: 112.104.98.253 (07/17 23:08)