看板 Math 關於我們 聯絡資訊
※ 引述《mqazz1 (無法顯示)》之銘言: : students A and B were asked to solve the eigenvalues of the same matrix M : [a b c] : = [0 d 1]. Unfortunately, Student A mistook the value of d and obtained the : [0 2 e] : eigenvalues 0, 1, 3. Student B mistook the value of e and obtained the : eigenvalues 1, 1, -2. : (1) find the value of a 請問為什麼可以看出a=1? a一定是eigenvalue,而兩個人算出的eigenvalue中重疊的只有1 : ========================================== : (2) If A is a 3*3 matrix with 3 distinct eigenvalues 0,1,2, : then the matrix (A+I) must be invertible : true 請問為什麼? A+I的eigenvalue是1,2,3 det(A+I)=6 != 0 : (3) An n*n matrix with n linearly independent eigenvectors is invertible : False 請問為什麼? 0方陣可以找到足夠多線性獨立的eigenvector 對於是否invertible,真正的重點是eigenvalue有沒有0 : (4) If A is an n*n diagonalizable matrix, then each vector in R^n can be : written as a linear combination of eigenvectors of A : true 請問為什麼? 可以被對角化的矩陣,一定有n個線性獨立的eigenvector 這些eigenvector會span整個空間 : 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.248.5.30
handsboy :第二題看不懂有人可以解釋一下嗎QQ 08/07 22:38
s3300046 :det(A+I)=6!=>不等於0,所以會有反矩陣 08/07 23:43
ert0700 :或者因為0不是特徵值 所以 ker(A)={0} 08/07 23:55
LiamIssac :positive eigenvalues means invertibility 08/08 02:16
handsboy :其實是看不懂det(A+I)=6! QQ 08/08 21:32
ricestone :他是寫不等於 08/08 21:32