作者Vulpix (Sebastian)
看板Math
標題Re: [線代] 幾個eigenvalue的觀念
時間Sun Aug 7 22:25:06 2011
※ 引述《mqazz1 (無法顯示)》之銘言:
: students A and B were asked to solve the eigenvalues of the same matrix M
: [a b c]
: = [0 d 1]. Unfortunately, Student A mistook the value of d and obtained the
: [0 2 e]
: eigenvalues 0, 1, 3. Student B mistook the value of e and obtained the
: eigenvalues 1, 1, -2.
: (1) find the value of a 請問為什麼可以看出a=1?
a一定是eigenvalue,而兩個人算出的eigenvalue中重疊的只有1
: ==========================================
: (2) If A is a 3*3 matrix with 3 distinct eigenvalues 0,1,2,
: then the matrix (A+I) must be invertible
: true 請問為什麼?
A+I的eigenvalue是1,2,3
det(A+I)=6 != 0
: (3) An n*n matrix with n linearly independent eigenvectors is invertible
: False 請問為什麼?
0方陣可以找到足夠多線性獨立的eigenvector
對於是否invertible,真正的重點是eigenvalue有沒有0
: (4) If A is an n*n diagonalizable matrix, then each vector in R^n can be
: written as a linear combination of eigenvectors of A
: true 請問為什麼?
可以被對角化的矩陣,一定有n個線性獨立的eigenvector
這些eigenvector會span整個空間
: 謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.248.5.30
推 handsboy :第二題看不懂有人可以解釋一下嗎QQ 08/07 22:38
推 s3300046 :det(A+I)=6!=>不等於0,所以會有反矩陣 08/07 23:43
→ ert0700 :或者因為0不是特徵值 所以 ker(A)={0} 08/07 23:55
→ LiamIssac :positive eigenvalues means invertibility 08/08 02:16
→ handsboy :其實是看不懂det(A+I)=6! QQ 08/08 21:32
→ ricestone :他是寫不等於 08/08 21:32