看板 Math 關於我們 聯絡資訊
※ 引述《mqazz1 (無法顯示)》之銘言: : Every n*n matrix has n eigenvalues and n eigenvectors : False : ======== : (d) Each eigenvector of A is also an eigenvector of A^2 : True 2 2 Av = λv => A v = A(Av) = A(λv) = λ(Av) = λ v. v: eigenvector. : (e) Each eienvector of an invertible matrix A is also : an eigenvector of A^(-1) : True Note that if A is invertible, then 0 is not an eigenvalue of A. -1 -1 -1 Av = λv => v = A (Av) = A (λv) = λ(A v) -1 -1 => A v = λ v. v : eigenvector, λ: eigenvalue. : (f) If v is an eigenvector of an invertible matrix A, : then cv is an eigenvector of A^(-1) for all nonzero scalars c : True -1 -1 -1 -1 -1 -1 Av = λv => A v = λ v => A (cv) = c(A v) = c(λ v) = λ (cv). v : eigenvector, λ: eigenvalue. : 請問這些是為什麼? : 謝謝 -- ▁▂▁ -●-● ╯╰ 英雄 英雄 膽小狗英雄 小笨狗! 嗷嗚~ ˙ ˙ +╮ 從小就被拋棄 你害我好丟臉! ╲ =◣◢= 是茉莉兒好心把他撿回來 他幫助茉莉兒夫婦解決困難 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.123.62.134