看板 Math 關於我們 聯絡資訊
※ 引述《il0306 (MrSix)》之銘言: X1 , ... , Xn iid N(μ,σ^2) T(X) = (X,S^2) with S^2 = Σ(Xi-X)/(n-1) T(X) is sufficient for (μ,σ^2) and complete 1) 如果 μ=0 ie N(0,σ^2) T(X) 會sufficient for σ^2 ? 會 complete 嗎? 2) 如果 μ^2=σ^2 ie N(μ,μ^2) T(X) 會sufficient for μ ? 會 complete 嗎? ---------------- For Question2 : iid X1 ... Xn → N(θ,θ^2) L(θ,x ) = (e^-1/2 / (2π)^-1/2 ) [(θ^2)^-1/2 ] exp{[(-x^2/2θ^2)+(x/θ)}  ̄  ̄ so ( Σ(Xi)^2 , ΣXi ) is (minimal) sufficient statistic for θ since T = (n-1)S^2 / θ^2 → Chi-Square(n-1) ___ E((√n-1)S/θ) = c , where c is a constant Noted that c can be derived from E(√T) ___ so E((√n-1)S/c) = θ ╴ ___ Let g (Σ(Xi)^2 , ΣXi) = Xn- √n-1)S/c Hence E(g(Σ(Xi)^2 , ΣXi)) = 0 but g is not zero function ╴ so T(X ) is not complete -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.10.40