看板 Math 關於我們 聯絡資訊
※ 引述《ntucc (整個想完蛋..好累!)》之銘言: : 1 1 : 1. ______ __ _________ 的最大值? 當m,n皆為正整數 : m+n+1 (m+1)(n+1) First, consider m,n are both positive REAL f(m,n)=mn/(m+n+1)/(m+1)/(n+1)=g(m,n)*n/(n+1) g(m,n)=m/(m^2+(n+2)m+n+1) 1/g(m,n)=m+n+2+(n+1)/m=n+2+h(m,n) h(m,n)=m+(n+1)/m when n is fixed h(m,n)>=2√(n+1) and minimum occurs at m^2=n+1 That is, max f(m,n) occurs at m^2=n+1 for n fixed U(m)=f(m,m^2-1)=m(m^2-1)/(m^2+m)/(m+1)/m^2=(m-1)/(m^3+m^2) U(1)=0, U(2)=1/12, U(2+k)=(1+k)/(12+16k+7k^2+k^3)<(1+k)/(12+12k)=1/12 when k>0 That is, max f(m,n) CANNOT occur at n>3 for m,n positive real --------------------------------------------------------------------- we need to check f(m=1,n=1)=1/12 f(1,2)=1/12 f(2,1)=1/12 f(2,2)=4/45 f(2,3)=1/12 ----------------------------------------------- MAX is f(2,2)=4/45 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.104.144.44 ※ 編輯: JohnMash 來自: 112.104.89.190 (08/16 11:30)