看板 Math 關於我們 聯絡資訊
1. Suppose that an →L. Show that if an 小於等於 M for all n, then L 小於等於 M . 2. Let f be a function continuous everywhere and let r be a real number. Define a sequence as follows: a1=r , a2=f(r) , a3=f(f(r)) , ......... Prove that if an→L, then L is a fixed point of f:f(L)=L 這二題習題和同學討論許久不得其解 請版上高手解答 感謝! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.34
wheniam64 :an 是數列的第n項 不好意思打不出下標的感覺 08/17 23:26
jacky7987 :f(L)=f(lim_{n->inf}a_n)=lim_{n->inf}f(a_n) 08/17 23:39
jacky7987 :=lim_{n->inf}a_{n+1}=L 08/17 23:40
keroro321 :2.極限定義+連續函數定義想一下就是答案了 08/17 23:40
jacky7987 :1.假設L>M, choose e=(L-M)/2 08/17 23:46
wheniam64 :感謝啊,第二題原來不難XDD 08/17 23:51