作者wheniam64 (嘿)
看板Math
標題[微積] 數列極限問題2則
時間Wed Aug 17 23:25:38 2011
1. Suppose that an →L. Show that if an 小於等於 M for all n,
then L 小於等於 M .
2. Let f be a function continuous everywhere and let r be a real number.
Define a sequence as follows:
a1=r , a2=f(r) , a3=f(f(r)) , .........
Prove that if an→L, then L is a fixed point of f:f(L)=L
這二題習題和同學討論許久不得其解
請版上高手解答
感謝!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.240.34
→ wheniam64 :an 是數列的第n項 不好意思打不出下標的感覺 08/17 23:26
推 jacky7987 :f(L)=f(lim_{n->inf}a_n)=lim_{n->inf}f(a_n) 08/17 23:39
→ jacky7987 :=lim_{n->inf}a_{n+1}=L 08/17 23:40
→ keroro321 :2.極限定義+連續函數定義想一下就是答案了 08/17 23:40
推 jacky7987 :1.假設L>M, choose e=(L-M)/2 08/17 23:46
→ wheniam64 :感謝啊,第二題原來不難XDD 08/17 23:51