看板 Math 關於我們 聯絡資訊
x/y x/y solve [1+2e ]dx + 2e [1-x/y]dy=0 我的做法是 let u=x/y dx=ydu+udy u u => [1+2e ] [ydu+udy] + 2e [1-u]dy=0 u u => [1+2e ] [ydu+udy] = 2e [u-1]dy u u => 2e [u-1]/[1+2e ] = [ydu+udy]/dy = y(du/dy)+u u u u u => [2ue -2e -u-2ue ]/[1+2e ] = y(du/dy) u u => -[2e +u]/[1+2e ] = y(du/dy) u u => [(1+2e )/(2e +u)]du + dy/y = 0 u u =>∫[(1+2e )/(2e +u)]du +∫dy/y = C ^^^^^^^^^^^^^^^^^^^^^ 請問此積分如何求呢? 或是小弟頭昏,前面的運算有出錯呢? 重算很多次了,麻煩各位幫我看看,謝謝~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.25.161.165
sapphireBOB :ln(2e^u +u) 對u微分 08/18 16:30
Crazycraze :真是謝謝 自己基礎不好^^ 08/18 16:35