※ 引述《pml0415 (拼命)》之銘言:
: 團體賽
: http://ppt.cc/R4BR
6.
let g(x)=kx^2+ax+b
f(x)=x^2+cx+d
then f(g(x))=(kx^2+ax+b)^2+ c(kx^2+cx+d)+ d
=k^2x^4+2akx^3+...
So, 3+1+4+p = -2a/k, ie. p=-2a/k-8.
note that two of {g(3),g(1),g(4)} have to be equal.
hence, by the symmetry of quadratic functions, max{-a/k}=3+4=7
max{p}=14-8=6.
: 思考賽
: http://ppt.cc/NHoQ
: http://ppt.cc/pRK6
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 64.134.235.119