看板 Math 關於我們 聯絡資訊
若 cos(sinx) > sin(cosx) 則 cos(sinx) - sin(cosx) > 0 => cos(sinx) - cos(π/2 - cosx) > 0 => 2 * sin[(π/4) + (1/2) * (sinx - cosx) ] * sin[(π/4) - (1/2) * (sinx - cosx)] > 0 ...........(1) 因為 |sinx - cosx| = |√2 * sin(x - π/4)| ≦ √2 < π/2 所以 -π/2 < (sinx - cosx) < π/2 => -π/4 < (sinx - cosx)/2 < π/4 => 0 < π/4 + (1/2) * (sinx - cosx) < π/2 => sin[(π/4) + (1/2) * (sinx - cosx) ] > 0 ...........(2) 同理, sin[(π/4) - (1/2) * (sinx - cosx) ] > 0 ...........(3) 由(2)、(3)可推得(1)。 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 203.67.7.81