作者Rasin (RL)
看板Math
標題Re: [中學] 請教一題不等式
時間Tue Sep 20 22:54:47 2011
※ 引述《iamOrz (I am Orz)》之銘言:
: a,b是正實數,並且滿足a+b=1.
: 1 1
: 證明 (a + ---------)*(b + ---------) ≧ 25/4
: 2*(b^2) 2*(a^2)
: 請指教,謝謝
柯西不等式: ( a1^2 + a2^2 )( b1^2 + b2^2 ) >= ( a1*b1+a2*b2 )^2
令: a1 = sqrt(a), a2 =1/(sqrt(2)*b);
b1 = sqrt(b), b2= 1/(sqrt(2)*a). 代入上式
可得:
( a + 1/(2*b^2) )( b + 1/(2*a^2) ) >= ( sqrt(a*b) + 1/(2*a*b) )^2
上式當 a1/b1 = a2/b2 時(兩向量平行)等號成立:
即 sqrt(a)/sqrt(b) = a/b 成立時有最小值
又 a + b = 1, 是故 a = b =1/2 時, 左式有最小值( 1/2 + 2 )^2 = 25/4
( a + 1/(2*b^2) )( b + 1/(2*a^2) ) >= 25/4 得證
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 125.231.33.179
※ 編輯: Rasin 來自: 125.231.33.179 (09/20 22:55)
推 oNeChanPhile:不行,必須證明√ab + 1/2ab在a=b=1/2時也達到極小 09/20 23:00
→ oNeChanPhile:如果等號成立時,右式非極小,是不行的。 09/20 23:00
→ Rasin :非也, 不等式的成立無關絕對極值, 另者柯西不等式... 09/20 23:42
→ Rasin :...當兩向量成比例即可求得"左式"之最小值... 09/20 23:43
→ Rasin :...何必在意右式呢 09/20 23:44
→ oNeChanPhile:第二句推文錯 兩向量成比例是等號成立不保證左式極小 09/21 00:05
推 oNeChanPhile:去看一下柯西不等式的幾何意義吧 wiki應該會有 09/21 00:07