看板 Math 關於我們 聯絡資訊
請教兩個簡單代數兩個習題, 1.證明order 3 的group unique and it is abelian 2.證明order 4的group只有兩種 並且兩個都是交換群 1還好, 討論那個multiplication table 仔細討論 可以得到唯一.. 因為identity那一行跟列(共 五個) 很容易寫下 就剩下四個 討論一下 2要如何動手做阿? 還是一個一個討論嗎? 這樣變成有九個要討論 很複雜耶.. 雖然我知道 答案就兩個 Klein four group 跟Z_4 可是要如何證? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 68.48.173.107
dogy007 :可以考慮 group 中元素的 order 10/05 09:35
TassTW :同上, 第一題考慮 order 就不用寫乘法表 10/05 11:05
jacky7987 :3是質數 所以是cyclic so is abelian 10/05 11:37
jacky7987 :第二題用a屬於G 然後|<a>|整除|G| 分成|<a>|=2 or 4 10/05 11:37