看板 Math 關於我們 聯絡資訊
w.l.o.g. assume Im{eig(A)} ≠ 0 (o.w. B=A, C=I) ∵ A is real => A is not scalar matrix ∴ exist real vector x s.t. R^2 = span{x,Ax} => ax + bAx + A^2x = 0 for some real number a and b represent A using bases {x,Ax} A|_{x,Ax} = [ 0 -a ] := R [ 1 -b ] => A = P R P^{-1} , where P = [x Ax] = P [ 0 a ] P^{-1} P [ 1 0 ] P^{-1} [ 1 b ] [ 0 -1 ] = BC where B := P [ 0 a ] P^{-1} and C := P [ 1 0 ] P^{-1} [ 1 b ] [ 0 -1 ] are real matrices both with real eigenvalues ( poly(A) = poly(R) = x^2 + bx + a => b^2 - 4a < 0 poly(B) = poly([0 a]) = x^2 -bx -a , D = (-b)^2 + 4a > 0 ) [1 b] ※ 引述《cholauda (cholauda)》之銘言: : 請教大大~ : For any real 2x2 matrix, A, : there exists two real 2x2 matrices with real eigenvalues, B & C, such that : A=BC : 請問這該怎麼證明? : 感激!!! : hint: 可能可以從Jordan form來看?! : 信站: 批踢踢實業坊(ptt.cc) : ◆ From: 140.113.150.197 : ※ 編輯: cholauda 來自: 140.113.150.197 (10/25 15:51) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.168.28.154 ※ 編輯: GSXSP 來自: 218.168.28.154 (10/25 22:20)