看板 Math 關於我們 聯絡資訊
題目: g(x)是一連續的function而且g(x)=0當x是有理數. 證g(x)=0對於所有x屬於R. 我的回答: 假設x0是一real number令得g(x0)=/=. 但是,根據g(x)是連續的定義,會令x0旁的有理數x, 使得g(x)=/=0. 這是矛盾的,因為和定義不符合. 所以g(x)=0. 麻煩各位大大指點一下了. (順道多謝昨天密我的版友了. 因為還不太懂用ptt, 所以未能及時說道謝. 真的很感激各人的熱心了. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.36.84.45
mikapauli :連續函數>極限存在 10/29 14:31
mikapauli : 且函數值等於極限 10/29 14:32
mikapauli :R中所有數皆為有理數列的極限>g(x)可由g(xi) 10/29 14:35
mikapauli : i€N,xi€Q逼近 10/29 14:37
mikapauli :由g(xi)=0知lim(i→∞)g(xi)=lim(i→∞)0=g(x) 10/29 14:38
mikapauli :這樣證可以嗎? 10/29 14:39