看板 Math 關於我們 聯絡資訊
1. In the additive group |R^m of vectors, let W be the set of solutions of a system of homogeneous linear equations AX=0. Show that the set of solutions of an inhomogeneous system AX=B is either empty or it is an (additive) coset of W 首先這題的A應該是個方陣吧?! 那麼AX=B無解的話,表示set of solution of AX=B is empty. 若是以這樣的想法,我想不出如果有solution的話,和coset會有甚麼關係..... 2. A group G of order 22 contains elements x and y, where x≠1 and y is not a power of x. Prove that the subgroup generated by these elements in the whole group G. 依照題意我覺得會用到cyclic group,但是不知道從何下手...... 感謝各位大大指教 :) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 125.225.15.246
jacky7987 :AX=B 有一個解叫做v的話那 v+W都是解 10/30 22:54
jacky7987 :因為A(v+W)=Av+0=B 10/30 22:54
zombiea :2: |x|=2, 11, 22, for first 2 cases, we have 10/31 03:44
zombiea :G=<x,z> for some z, then y=x^az^b, b=\=0, rewrite 10/31 03:44
zombiea :z by x and y... 10/31 03:45
zombiea :here note that G also equal to <x,z^b> for 2, 11 10/31 03:46
zombiea :are primes. 10/31 03:46
air11 :感謝以上兩位大大的提示,我在想想看 :D 10/31 11:13