作者air11 (拿出一張白紙...)
看板Math
標題[代數] Cosets
時間Sun Oct 30 22:12:06 2011
1. In the additive group |R^m of vectors, let W be the set of solutions
of a system of homogeneous linear equations AX=0. Show that the set
of solutions of an inhomogeneous system AX=B is either empty or
it is an (additive) coset of W
首先這題的A應該是個方陣吧?!
那麼AX=B無解的話,表示set of solution of AX=B is empty.
若是以這樣的想法,我想不出如果有solution的話,和coset會有甚麼關係.....
2. A group G of order 22 contains elements x and y, where x≠1 and y is not
a power of x. Prove that the subgroup generated by these elements in the
whole group G.
依照題意我覺得會用到cyclic group,但是不知道從何下手......
感謝各位大大指教 :)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 125.225.15.246
推 jacky7987 :AX=B 有一個解叫做v的話那 v+W都是解 10/30 22:54
→ jacky7987 :因為A(v+W)=Av+0=B 10/30 22:54
推 zombiea :2: |x|=2, 11, 22, for first 2 cases, we have 10/31 03:44
→ zombiea :G=<x,z> for some z, then y=x^az^b, b=\=0, rewrite 10/31 03:44
→ zombiea :z by x and y... 10/31 03:45
→ zombiea :here note that G also equal to <x,z^b> for 2, 11 10/31 03:46
→ zombiea :are primes. 10/31 03:46
→ air11 :感謝以上兩位大大的提示,我在想想看 :D 10/31 11:13