作者yueayase (scrya)
看板Math
標題[微積] Wronskian
時間Tue Nov 15 07:46:01 2011
(1)
有關Wronskian本身和一組函數是否相依或獨立,
感覺上要先從獨立和相依的定義著手:
Definition(Linear Dependence of Functions):The n functions
f1(t), f2(t),...,fn(t) are said to be linearly dependent on
the interval I if there exists constants c1,c2,...,cn such
that c1*f1(t)+c2*f2(t)+...+cn*f(n) = 0 for all t in I. If
they are not linearly depenedent on I, it is said to be
linearly independent.
由此可知,n個函數要線性相依必須要存在一組不全為零的常數使得
c1*f1(t)+c2*f2(t)+...+cn*f(n) = 0 且要在整個區間都成立
所以如果對於整個區間,不存在不全為零的的一組常數,使得
c1*f1(t)+c2*f2(t)+...+cn*f(n) = 0,則不是線性相依(就是線性獨立,
和定義完全等價)
所以,如果說x,|x|在整條實數線是否相依,
則要去解
c1*x+c2*|x|=0
For x>=0 => (c1+c2)x=0
For x<0 => (c1-c2)x=0
=> c1+c2=0, c1-c2=0 =>c1=c2=0 => x,|x|在整條實數線上線性獨立
但是如果我改成x,|x|在x>0,是否相依呢?
c1*x+c2*|x| = (c1+c2)x = 0
=> c1=1, c2=-1,不全為零,則相依
同理,x,|x|在x<0,相依(c1*x+c2*|x|=(c1-c2)x=0, set c1=c2=1)
這會產生一個有趣的現象,似乎只要改變區間範圍,結果就會不一樣?
考慮x,|x|的Wronskian:
2 2
W(x,|x|) = | x |x| | = x / |x| - |x| = |x| / |x| - |x| = 0
| 1 x/|x| |
for all x except for x = 0.
所以 Wronskian of x and |x| is identically zero for all x except for x=0.
看起來W(x) = 0,根本無法判斷相依或獨立
但"If there is a value b such that W(x) is not zero, f1,f2,...,fn are
linearly independent."這句話好像就是定義的等價敘述,所以
W(x) ≠ 0 for all x implies f1(x),f2(x),...,fn(x) are linearly independent.
好像是對的
----------------------------------------------------------------------------
(2) 微分方程有一個Wronskian和相依獨立的定理:
Theorem: Suppose y1(t),y2(t),...yn(t) are solutions of the homogenerous n-order
linear equation
(n) (n-1) '
y + p (t)y + ... + p (t) y + p (t) y = 0
n-1 1 0
on an open interval I and p i = 0,1,..,(n-1) are continuous on I.
i,
Let W = W(y1(t),y2(t),...,yn(t)).
(a) If y1,y2,...,yn are linearly dependent, W = 0 for all t on I
(b) If y1,y2,...,yn are linearly independent, W≠0 for all t on I.
Proof:
(a) Assume for t=a, W ≠ 0 and y1,y2,..yn are linearly depedent.
The system
c1*y1(a)+c2*y2(a)+ ... + cn*yn(a) = 0
' ' '
c1*y1(a)+c2*y2(a)+ ... + cn*yn(a) = 0
....
(n-1) (n-1) (n-1)
c1*y1 (a)+c2*y2 (a)+ ... +cn*yn (a) = 0
has a unique solution c1=c2=...=cn=0.
(det(A) ≠ 0 <=> Ax=0 has a unique solution x=0)
By the definition of linear dependency,
y1,y2,...,yn are linearly independent.(Contradiction!)
So, if y1, y2,...,yn are linearly dependent , W = 0 for all t on I.
(b) Assume for t=a, W = 0 and y1,...,yn are linearly independent.
Then, the system
c1*y1(a)+c2*y2(a)+ ... + cn*yn(a) = 0
' ' '
c1*y1(a)+c2*y2(a)+ ... + cn*yn(a) = 0
....
(n-1) (n-1) (n-1)
c1*y1 (a)+c2*y2 (a)+ ... +cn*yn (a) = 0
has a solution for c1,c2,..,cn and not all zeros.
Use these constants c1,c2,...,cn and use the original differential equation
' (n-1)
and let y(a) = y (a) = ... = y (a) = 0 to construct a initial value
problem.
By Supeposition Principle, Y(t) = c1*y1(t)+c2*y2(t)+...+cn*yn(t) are
a general solution of the original differential equation since
' (n-1)
y1,y2,...,yn are solutions. Furthermore, Y(a) = Y (a) = ...=Y (a) = 0
by our preceding setting of c1,c2,..,cn.Therefore, Y(t) is a solution
to the I.V.P.
However, by Exsitence and Uniqueness Theorem, the I.V.P
(n) (n-1) '
y + p (t)y + ... + p (t) y + p (t) y = 0
n-1 1 0
' (n-1)
y(a) = y (a) = ... = y (a) = 0
has a unique solution.
Then, Y(t) = c1*y1(t)+c2*y2(t)+...+cn*yn(t) = 0 for all t on I.
Since c1,c2,...,cn are not all zeros, y1(t),y2(t),...yn(t) are
linearly dependent and it leads to contradiction!
So, statement (b) is true.
看看(b)的等價敘述,不是指如果W(a) = 0 for some a on I,y1,y2,...,yn是
線性相依嗎?(因為相依和獨立是二分的)
------------------------------------------------------------------------
所以 Wronskian 等於0可不可以得到相依,是要看條件和你的定義域 I 而定的,
不然不是沒有意義?
我說的對不對??
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.251.178.124
※ 編輯: yueayase 來自: 111.251.178.124 (11/15 07:52)
推 herstein :你必須看你函數長怎樣..... 11/15 08:13
推 Honinbo2007 :結論是對的~不等於零才有判別 不過標題要改一下字XD 11/15 08:42
※ 編輯: yueayase 來自: 111.251.178.124 (11/15 16:34)
※ 編輯: yueayase 來自: 111.251.178.124 (11/15 16:36)
※ 編輯: yueayase 來自: 111.251.161.141 (11/17 00:13)