作者kusoayan (瑋哥)
看板Math
標題Re: [線代] AB=O
時間Fri Nov 18 22:57:11 2011
※ 引述《mqazz1 (無法顯示)》之銘言:
: Let A, B denote two n*n matrices satisfying AB=O.
: Then in the following, pick up the correct statements.
: (a) BA=O
False,
let A=[ 1 0 ] B=[ 0 0 ]
[ 0 0 ] [ 1 0 ]
then AB = 0, but BA != 0
: (b) all eigenvalues of BA are 0
: (c) (BA)^2 = O
True,
(BA)^2 = BABA = B(AB)A = 0
: (d) A=O or B=O
False, Similary to (a)
: (e) rank(A) + rank(B) = n
False,
pick A=B=0
: 謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.248.161.88
推 bineapple :b也是true 從c可得知 11/18 22:59
推 bennygameii :不好意思 我可以問一下為什麼b是true嘛?? 11/19 00:39
推 jacky7987 :因為BA的特徵多項式跟AB一樣 11/19 00:50
推 PaulErdos :如果v是BA的eigen vector, 則(BA)^2 v = BA(λv) 11/19 04:58
→ PaulErdos :=λ^2 v = 0 , 因v非零所以λ被迫要是0 11/19 04:58
推 G41271 :原來如此!! 11/19 08:36