看板 Math 關於我們 聯絡資訊
※ 引述《mqazz1 (無法顯示)》之銘言: : Let A, B denote two n*n matrices satisfying AB=O. : Then in the following, pick up the correct statements. : (a) BA=O False, let A=[ 1 0 ] B=[ 0 0 ] [ 0 0 ] [ 1 0 ] then AB = 0, but BA != 0 : (b) all eigenvalues of BA are 0 : (c) (BA)^2 = O True, (BA)^2 = BABA = B(AB)A = 0 : (d) A=O or B=O False, Similary to (a) : (e) rank(A) + rank(B) = n False, pick A=B=0 : 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.248.161.88
bineapple :b也是true 從c可得知 11/18 22:59
bennygameii :不好意思 我可以問一下為什麼b是true嘛?? 11/19 00:39
jacky7987 :因為BA的特徵多項式跟AB一樣 11/19 00:50
PaulErdos :如果v是BA的eigen vector, 則(BA)^2 v = BA(λv) 11/19 04:58
PaulErdos :=λ^2 v = 0 , 因v非零所以λ被迫要是0 11/19 04:58
G41271 :原來如此!! 11/19 08:36