作者IminXD (Encore LaLa)
看板Math
標題Re: [高微] 證明數列收斂
時間Tue Nov 29 20:23:21 2011
今天想了一下,做a_n會卡,所以乾脆用Sn來做試試看
上半部一樣
: If 2Sn ≦ S_n-1 + S_n+1
: => Sn + Sn ≦ S_n-1 + S_n+1
: => Sn - S_n-1 ≦ S_n+1 - Sn
: => a_n ≦ a_n+1
Since S_n+1 = Sn + a_n+1
=> Sn is increasing and bounded above
=> lim Sn = M exists
n->∞
for all ε> 0 , there is a k€N ,s.t. |Sn-M|<ε/2 for all n≧k
|S_n+1 - Sn|=|S_n+1 -M +M -Sn|≦|S_n+1 -M|+|M -Sn|≦ε/2 + ε/2 = ε
=> lim ( S_n+1 - Sn ) = 0
n->∞
感覺這樣寫就可以了..不知道這個方向的想法是否正確?
※ 引述《IminXD (Encore LaLa)》之銘言:
: 題目:Let Sn be a bounded sequence of real numbers. Assume 2Sn≦S_n-1 + S_n+1
: Show that lim ( S_n+1 - Sn ) = 0
: n->∞
: 我的作法是這樣..
: Let a_n+1 = Sn+1 - S_n
: If 2Sn ≦ S_n-1 + S_n+1
: => Sn + Sn ≦ S_n-1 + S_n+1
: => Sn - S_n-1 ≦ S_n+1 - Sn
: => a_n ≦ a_n+1
: ==> <a_n> is a increasing seq.
: Sn + Sn ≦ S_n-1 + S_n+1
: => Sn - S_n+1 ≦ S_n-1 - Sn
: Since Sn be a bounded sequence, |Sn| ≦ M with M€R ((屬於不會打QQ
: => |a_n+1| ≦ |Sn - S_n+1| ≦ |Sn| + |S_n+1| ≦ 2M
: => <a_n> is bounded
: Cause <a_n> is increasing and bounded above
: => <a_n> converges
: 後面的部份我不知道該怎麼證明lim (S_n+1 - Sn) = 0
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.42.91.161
推 s3300046 :其實Sn不會是遞增的,因為每個a_n都是負的 11/29 21:33
→ IminXD :但是我知道a_n ≦ a_n+1 而S_n+1 = Sn + a_n+1 11/29 22:02
→ IminXD :後一項一定比前一項還要大 累加上去.. 11/29 22:02
→ IminXD :題目已知有界,所以從遞增、有上界=>數列收斂 著手 11/29 22:03
推 s3300046 :你要加正的數字上去sn才會越來越大,但a_n是恆負的 11/29 22:11
→ s3300046 :所以Sn是遞減有下界這樣 11/29 22:12
所以我在用Since S_n+1 = Sn + a_n+1就該先討論嗎?
if a_n ≧ 0,S_n+1 = Sn + a_n+1 for all n€N
=> Sn is increasing and bounded above
if a_n < 0,S_n+1 = Sn + a_n+1 for all n€N
=> Sn is decreasing and bounded below
and so lim Sn = M exists
如果這樣子寫呢? 因為我從式子裡面看不出來a_n是恆負這件事阿QQ
※ 編輯: IminXD 來自: 114.42.91.161 (11/29 22:33)
推 herstein :no....not correct.... 11/29 23:19
→ IminXD :為什麼@@ 11/29 23:34
推 s3300046 :18035篇的推文中有說明 11/29 23:47