※ 引述《pop10353 (卡卡:目)》之銘言:
: f(x) 滿足 f(1)=1 ;
: 1
: f'(x)= --------------- , each x>=1
: 2 2
: X + f (x)
: prove lim f(x) exist 而且 < 1+ (π/4)
: x->無窮大
: 有沒有人可以證明得出來@@?
: 我想要用結果去學習,這問題也卡了快一個多月了。
: 感激不盡
Observation:
1. f'(x) > 0 on [1,∞)
so f(x) is strictly increasing on [1,∞)
so f(x) > 1 on (1,∞)
2. Since f is diff. on [1,∞)
so f is conti. on [1,∞)
Hence f'(x) = 1/(x^2+f^2(x)) is conti. on [1,∞)
3. 0 < f'(x) = 1/(x^2+f^2(x)) < 1/(x^2+1) on (1,∞)
0 < f'(x) = 1/(x^2+f^2(x)) <= 1/(x^2+1) on [1,∞)
by comparion test , f'(x) is integrable on [1,∞)
and by Fundental Theorem of Calculus , we have:
f(∞) - f(1) <= arctan(∞) - arctan(1)
so f(∞) <= f(1) + arctan(∞) - arctan(1)
↑ ↑ ↑
1 pi/2 pi/4
Q.E.D.
至於要怎麼去除等號
你只要把[1,∞)拆成[1,2]&[2,∞)
[2,∞)那部分有等號沒關係
可是[1,2]那一部分如果發生等號,因為是連續函數,會迫使他是常數函數
與絕對遞增這個性質矛盾
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 1.169.139.193