看板 Math 關於我們 聯絡資訊
4.(b) Let a(n)>0, a(n+1)/a(n)<=(1-2/n) for n>=3. Show that the series of a(n) is convergent. 6. Prove that, for each integer n, there exists a C^2 function w=g(x,y) defined in some neighborhood of (0,0) such that x+2yw+cosw=0, g(0,0)=nπ+π/2. 請問有任何解題的方向嗎? 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 134.208.26.13
bineapple :6 implicit function theorem 12/11 15:44
tasukuchiyan:隱函數定理我有想過,不過不知道要怎麼使用 12/11 16:00
tasukuchiyan:嚴格的寫下證明 12/11 16:01
Sfly :4的不等號反了吧 12/11 16:05
bineapple :F(x,y,w)=x+2yw+cosw=0 at (0,0,nπ+π/2) 12/11 16:18
bineapple :所以可以把w寫成g(x,y)在一個neighborhood of (0,0) 12/11 16:19
bineapple :然後對F(x,y,g(x,y))偏微 證明g是C^2 12/11 16:19
※ 編輯: tasukuchiyan 來自: 134.208.26.13 (12/11 17:40)
tasukuchiyan:要怎麼對F(x,y,g(x,y))偏微,證明g是C^2呢? 12/11 19:17
bineapple :F(x,y,g(x,y))在(0,0)的附近都是0 所以得到在0的附近 12/12 01:33
bineapple :x+2yg(x,y)+cos(g(x,y))=0 對這個式子偏微後能夠把 12/12 01:34
bineapple :g的一次微分提出來寫成x,y,g(x,y)的式子 然後再利用 12/12 01:34
bineapple :g是C^1的性質 12/12 01:35
tasukuchiyan:那g'不是從(0,0)的鄰域映射到L(R^2,R)的函數嗎? 12/12 12:09
tasukuchiyan:怎麼用g是C^1的性質去證明g'可微分? 12/12 12:10
Sfly :把w_x表成 w跟y,x的函數 12/12 13:30
tasukuchiyan:If all mixed second order partial derivatives are 12/12 15:25
tasukuchiyan:continuous at a point, f is termed a C^2 function 12/12 15:26
tasukuchiyan:at that point. 12/12 15:26
tasukuchiyan:是這一回事嗎? 12/12 15:28
bineapple :yes 12/12 16:08
Sfly :這句話要證明 雖然只是隱函數定理的一個推論 12/12 16:27
tasukuchiyan:感謝所有回答的人 12/13 11:05