看板 Math 關於我們 聯絡資訊
※ 引述《tasukuchiyan (Tasuku)》之銘言: : 4.(b) : Let a(n)>0, a(n+1)/a(n)<=(1-2/n) for n>=3. : Show that the series of a(n) is convergent. consider lim_{x→∞} [ln x - ln(x-2)]/[ln (x+1) - ln x] = lim_{x→∞} [1/x - 1/(x-2)] / [1/(x+1) - 1/x] = lim_{x→∞} (x-2-x)/[x(x-2)] / {(x-x-1)/[(x+1)x]} = 2 hence, there exists N such that [ln n - ln (n-2)] > (1.5) [ ln (n+1) - ln n] whenever n > N n/(n-2) > [(n+1)/n]^(1.5) 1-2/n = (n-2)/n < [n/(n+1)]^{1.5} that is, a(n+1)/a(n) < [n/(n+1)]^{1.5} hence, a(N+2) < a(N+1) [(N+1)/(N+2)]^{1.5} a(N+3) < a(N+2) [(N+2)/(N+3)]^{1.5} < a(N+1) [(N+1)/(N+3)]^1.5 ..... then a(N+2) + a(N+3) + .... < a(N+1) (N+1)^{1.5} [ 1/(N+2)^{1.5} + 1/(N+3)^{1.5} + 1/(N+4)^{1.5} + ...] Convergent, Done. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.104.114.157
tasukuchiyan:感謝,不過這要怎麼想到的? 多做自然就會嗎? 12/12 15:36
bineapple :這題應該還有(a)小題吧 (a)應該就是提示 12/12 16:09
tasukuchiyan:我也這麼想,但是我想不到要怎麼用(a)去證明(b) 12/12 16:33
tasukuchiyan:(a)是說log(1-x)<=-x for 0<=x<1 and 12/12 16:35
tasukuchiyan:log[(1-1/2)(1-1/3)…(1-1/n)]<=-(1/2+1/3+…+1/n) 12/12 16:37
tasukuchiyan:這樣(a)和(b)有關聯嗎? 12/12 17:07
dogy007 :其實前面的 (a) 誤導我們用了較難的解法 12/12 19:47
dogy007 :很容易證出 a_n < 6a_3 /(n(n-1)) 12/12 19:48
dogy007 :少打了等號,然後和 sum 1/(n(n-1)) 比較審斂 12/12 19:50
tasukuchiyan:喔喔~感謝,不過我怎麼算出a(n)<=2a(3)/((n-1)(n-2)) 12/12 20:22
dogy007 :嗯,我好像不小心有弄錯了 12/12 21:12