作者JohnMash (Paul)
看板Math
標題Re: [微積] 台大數研90高微考古題
時間Sun Dec 11 22:30:50 2011
※ 引述《tasukuchiyan (Tasuku)》之銘言:
: 4.(b)
: Let a(n)>0, a(n+1)/a(n)<=(1-2/n) for n>=3.
: Show that the series of a(n) is convergent.
consider
lim_{x→∞} [ln x - ln(x-2)]/[ln (x+1) - ln x]
= lim_{x→∞} [1/x - 1/(x-2)] / [1/(x+1) - 1/x]
= lim_{x→∞} (x-2-x)/[x(x-2)] / {(x-x-1)/[(x+1)x]}
= 2
hence, there exists N such that
[ln n - ln (n-2)] > (1.5) [ ln (n+1) - ln n] whenever n > N
n/(n-2) > [(n+1)/n]^(1.5)
1-2/n = (n-2)/n < [n/(n+1)]^{1.5}
that is,
a(n+1)/a(n) < [n/(n+1)]^{1.5}
hence,
a(N+2) < a(N+1) [(N+1)/(N+2)]^{1.5}
a(N+3) < a(N+2) [(N+2)/(N+3)]^{1.5} < a(N+1) [(N+1)/(N+3)]^1.5
.....
then
a(N+2) + a(N+3) + ....
< a(N+1) (N+1)^{1.5} [ 1/(N+2)^{1.5} + 1/(N+3)^{1.5} + 1/(N+4)^{1.5} + ...]
Convergent,
Done.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 112.104.114.157
推 tasukuchiyan:感謝,不過這要怎麼想到的? 多做自然就會嗎? 12/12 15:36
→ bineapple :這題應該還有(a)小題吧 (a)應該就是提示 12/12 16:09
→ tasukuchiyan:我也這麼想,但是我想不到要怎麼用(a)去證明(b) 12/12 16:33
→ tasukuchiyan:(a)是說log(1-x)<=-x for 0<=x<1 and 12/12 16:35
→ tasukuchiyan:log[(1-1/2)(1-1/3)…(1-1/n)]<=-(1/2+1/3+…+1/n) 12/12 16:37
→ tasukuchiyan:這樣(a)和(b)有關聯嗎? 12/12 17:07
→ dogy007 :其實前面的 (a) 誤導我們用了較難的解法 12/12 19:47
→ dogy007 :很容易證出 a_n < 6a_3 /(n(n-1)) 12/12 19:48
→ dogy007 :少打了等號,然後和 sum 1/(n(n-1)) 比較審斂 12/12 19:50
推 tasukuchiyan:喔喔~感謝,不過我怎麼算出a(n)<=2a(3)/((n-1)(n-2)) 12/12 20:22
→ dogy007 :嗯,我好像不小心有弄錯了 12/12 21:12