看板 Math 關於我們 聯絡資訊
※ 引述《tasukuchiyan (Tasuku)》之銘言: : 4.(b) : Let a(n)>0, a(n+1)/a(n)<=(1-2/n) for n>=3. : Show that the series of a(n) is convergent. (n+1)^(-2) Since 1 - 2/n ≦ ------------ by 1 - 2x ≦ (1+x)^(-2) for positive x, n^(-2) the sequence {a_n/n^(-2)} is decreasing. So, it is bounded above by C. It is clear that Σ a_n converges since Σ n^(-2) converges. NOTE. The number "2" can be replaced by any p>1. -- Good taste, bad taste are fine, but you can't have no taste. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.25.169 ※ 編輯: math1209 來自: 140.113.25.169 (12/14 20:41)
ej001 :great 12/14 20:47