看板 Math 關於我們 聯絡資訊
※ 引述《jacky7987 (憶)》之銘言: : 昨天上數論的時候 大概把代數都還給老師了 : 所以來請教大家 : Let R=Z[sqrt(-26)] : show that I=(3,1+sqrt(-26)) is a prime ideal. : 老師提到的提示是用 R/I 是個integral domain下手. : 可是似乎會遇到兩次除法(就是把R也換成quotient ring的寫法) : 然後我就掛了 : 懇請大家幫忙 by 3rd isomorphism theorem, R/I = [R/(3)]/[I/(3)] Note that I/(3)=(1+sqrt(-26)) (generated over R/(3)) and R/(3) has only 9 elements. ({0,1,2,x,1+x,2+x,2x,1+2x,2+2x}, where x^2=1) Indeed, R/(3)=R[x]/(x^2+26,3)=Z3[x]/(x^2+2)={ax+b:0=<a,b=<2} Under this identification, I/(3)=(3,x^2+26,x+1)/(3,x^2+26)=(x+1) (generated over R/(3)) So it can be shown easily that [R/(3)]/(1+x) has only 3 elements. As an additive group, it is isomorphic to Z3. Now it's straightforward to check that this is a ring isomorphism. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.51.97
jacky7987 :謝謝:) 12/25 00:35
LimSinE :推indeed 12/25 02:24
yusd24 :被樓上看出來了 12/25 10:53
jacky7987 :Indeed那行是Z_3[x]/(x^2+26)? 12/25 11:20
yusd24 :26=2 (mod 3) 12/26 10:26
jacky7987 :原來如此 12/26 10:30