作者julang (君語)
看板Math
標題Re: [中學] 請教聯立三元方程式的特別解法
時間Sat Dec 24 11:19:46 2011
※ 引述《rehearttw (易懷)》之銘言:
: 請問各位前輩:
: 解聯立下面的三元方程式
: a + b + c = 4
: a^2 + b^2 + c^2 = 50
: a^3 + b^3 + c^3 = 88
: 我可以硬算,用代入消去法處理得到 (a,b,c)=(3,-4,5)
: 但是好像有很特別的解法,簡單可以解出
: 可惜我年紀大了,記不太起來...
: 請教各位前輩。謝謝!
2 2 2 2
由 (a + b + c ) = a + b + c + 2 (ab + bc +ca)
以及 3 3 3 2 2 2
(a + b + c ) - 3abc = ( a + b + c)[ a + b + c -ab -bc -ca]
即可得 ab + bc +ca 和 abc之值
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.41.110.117
推 rehearttw :感謝! 12/24 16:42
推 wachsend :不錯! 這樣比較順 12/24 23:58