看板 Math 關於我們 聯絡資訊
如果我的問題在哪本書有,可以跟我講一下嘛?? 謝謝~~ ---------------------------------------------------------------------- 在DoCarmo的幾何中,Ch2-3的proposition 1:change of parameters 我把整個prop大約寫出來好了: Let p is a point of a regular surface S , and let X:U⊆R^2→S, Y:V⊆R^2→S be two parametrizations of S, s.t. p∈X(U)∩Y(V)=W Then the "change of coordinates", h=X^(-1)°Y:Y^(-1)(W)→Y^(-1)(W) is a diffeomorphism. 之後它在證明這個prop之前,先寫道: In other words, if x and y are given by X(u,v) = (x(u,v) , y(u,v) , z(u,v)) , (u,v)∈U Y(p,q) = (x(p,q) , y(p,q) , z(p,q)) , (p,q)∈V then the change of coordinates h , given by u=u(p,q) , v=v(p,q) , (p,q)∈Y^(-1)(W) has the property that the functions u and v have continuous partial derivatives of all orders, and the map h can be inverted, yielding p=p(u,v) , q=q(u,v) , (u,v)∈X^(-1)(W) where the functions p and q have continuous partial derivatives. ∂(u,v) ∂(p,q) And since ──── ──── = 1 ∂(p,q) ∂(u,v) this implies that the Jacobian determinants of both h and h^(-1) are nonzero. ----------------------------------------------------------------------------- 標題我打[微積]是因為從大一開始,老師就沒仔細定義過"座標變換" 之前在積分技巧裡(尤其是分部積分與重積分),常常用"代數變換" 我想,代數變換就是座標變換吧?? 想請問下列問題: 1.座標變換定義?? 僅限於R^n的子集←→R^n的子集?? 2.座標變換需要well-defined, 1-1, onto??(大一老師有說,積分的變數變換不需要1-1耶) 3.座標變換需要diffeomorphsim??(所以此兩子集就要都是open set??) 4.如一開始令的h,h就是h(p,q) = (u(p,q) , v(p,q)) , (p,q)∈Y^(-1)(W) and h^(-1)=h^(-1)(u,v) = (p(u,v) , q(u,v)) , (u,v)∈X^(-1)(W) ????? 5.文章最後標紅色的Jacobian那邊: 因為他是講"Since ......= 1",這個等式成立於什麼條件?? 就他文字這樣寫,感覺是因為那個等式成立所以證得differomorphism?? 所以是座標變換的話,那個等式就會成立?? 6.一開始那一大串寫完後,之後才寫:proof of prop 1 一開始那一大串是什麼?? 就是我標綠色那邊,這一大串是他還沒證的還是因為是座標變換才成立?? 抱歉...會這麼混亂感覺是因為不知道他的前因後果...請指教~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.227.33
ricestone :所以說座標轉換跟變數變換是不一樣的 12/26 14:33