作者tasukuchiyan (Tasuku)
看板Math
標題[微積] 台大95碩士班考試高微
時間Fri Dec 30 19:49:36 2011
4.
Let u and v be two real-valued C^1 functions on R^2 such that the gradient
▽u is never zero, and such that, at each point, ▽u and ▽v are linearly
dependent vectors. Given p = (x_0,y_0) belonging to R^2. Must there exist
a C^1 function F of one variable such that v(x,y) = F(u(x,y))?
5.
Given h : R → R a nonzero smooth function with compact support i.e. the
closure of {x : h(x)≠0} is compact. For ε > 0, let
∞ -K(x,y)/ε
∫ (x - y) e dy
-∞
u_ε(x) = ————————————— , for any x belonging to R,
∞ -K(x,y)/ε
∫ e dy
-∞
where K(x,y) = ((x-y)^2)/4 + h(y)/2 for x,y belonging to R.
(1) Can each u_ε be a smooth function with compact support?
(2) Can the limit lim u_ε(x) always exist? in what sense?
ε→0+
這兩題要怎麼著手? 有任何想法可以提供嗎? 感謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 134.208.26.13
推 znmkhxrw :第一題給p幹嘛??哪裡用到了?? 12/30 21:27
推 herstein :問題應該是F的存在與p有關係 12/30 22:15
→ herstein :題目大概沒PO完整 12/30 22:15
→ tasukuchiyan:題目照著試卷打的,給p點我也不懂是幹嘛 12/31 09:23
→ keroro321 :1.給定p點,應用反函數(x,y)<->(u,v) 就知道答案了 12/31 10:51
→ tasukuchiyan:但是▽u和▽v線性相依 12/31 12:27
→ keroro321 :喔喔 看錯 XDD 12/31 14:01