看板 Math 關於我們 聯絡資訊
4. Let u and v be two real-valued C^1 functions on R^2 such that the gradient ▽u is never zero, and such that, at each point, ▽u and ▽v are linearly dependent vectors. Given p = (x_0,y_0) belonging to R^2. Must there exist a C^1 function F of one variable such that v(x,y) = F(u(x,y))? 5. Given h : R → R a nonzero smooth function with compact support i.e. the closure of {x : h(x)≠0} is compact. For ε > 0, let ∞ -K(x,y)/ε ∫ (x - y) e dy -∞ u_ε(x) = ————————————— , for any x belonging to R, ∞ -K(x,y)/ε ∫ e dy -∞ where K(x,y) = ((x-y)^2)/4 + h(y)/2 for x,y belonging to R. (1) Can each u_ε be a smooth function with compact support? (2) Can the limit lim u_ε(x) always exist? in what sense? ε→0+ 這兩題要怎麼著手? 有任何想法可以提供嗎? 感謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 134.208.26.13
znmkhxrw :第一題給p幹嘛??哪裡用到了?? 12/30 21:27
herstein :問題應該是F的存在與p有關係 12/30 22:15
herstein :題目大概沒PO完整 12/30 22:15
tasukuchiyan:題目照著試卷打的,給p點我也不懂是幹嘛 12/31 09:23
keroro321 :1.給定p點,應用反函數(x,y)<->(u,v) 就知道答案了 12/31 10:51
tasukuchiyan:但是▽u和▽v線性相依 12/31 12:27
keroro321 :喔喔 看錯 XDD 12/31 14:01