看板 Math 關於我們 聯絡資訊
※ 引述《young11539 (〝☆小小霈★”)》之銘言: : If Ω is the punctured disk 0 < |z| < 1 : and if f is given by f(ζ) = 0 for |ζ| = 1 : f(0) = 1, show that all func. υ ≦ 0 in Ω : where υ is subhamornic in Ω and : limsup ν(z) ≦ f(ζ) : z→ζ : where ζ are the boundary points --------------------------------------------- 證明主要是利用 Perron's method 得到的函數 u(x) , 證明 " u(x) is bounded in Ω." (prove u=0 !) 然後再從 u(x) 的定義 , 得到本題的答案. --------------------------------------------- 需要用到書上 L. V. Ahlfors :"Complex Analysis," 3d ed. 此習題章節一些定理  ̄ ̄ ̄ ( 這章節介紹 Perron's method 來看 Dirichlet problem .) Let B(f) be the class of functions υ which satisfy (i) υ is subharmonic in Ω. (ii) limsup ν(z) ≦ f(ζ) where ζ are the boundary(Γ) points of Ω . z→ζ Let u (z)= l.u.b. υ(z) for υ\in Ω . 以下提到用書上哪些定理 Chapter 6 > Section 4.2 > Lemma1 → u is harmonic in Ω . 如果 f 在一個 boundary point ζ 連續 : Lemma2 → 在某些條件下 lim u(z) = f(ζ) . z→ζ f :Γ→|R 連續函數 Theorem9 → 在什麼樣的 region 下 Dirichlet problem 可解 . __ 證明: lim u(z) = 0 for all |a|= 1 . z→a 只要看 z=1 的情形的就好. (其他點相同做法) Let D = { |z| < 1 } , D(Γ) = { |z| = 1 } Let f:D(Γ)→|R be a continuous function so that f(1) = 0 , f(a)>0 for a≠1 . By Theorem9 , there exists a harmonic function F:D →|R such that F|D(Γ) = f Because F is harmonic => F(0) > 0 ! ------------------------------------------------ F: harmonic in Ω D(Γ)∪{z=0} || F(1) = 0 , F(a) > 0 for all a \in Γ - {z=1} So F is barrier at z=1 . ------------------------------------------------ By Lemma2 , lim u(z) = f(1) = 0 z→1 ───────────────────── Because (i) ν(z) is subharmonic in Ω . (ii) limsup ν(z) ≦ f(ζ) ≦ 1 . ( ζ \in Γ ) z→ζ Hence ν(z) ≦ 1 for all z \in Ω . Note : g = 0 在 B(f) 裡面 , so u(z) is "bounded" in Ω . 既然已證明了 lim u(z) = 0 for all |a|=1 z→a 而且 u(z) is bounded and harmonic in Ω={0 < |z| < 1} 那麼 z=0 就是一個 "removable sigularity" . 再由 Maximum Principle => u(z) = 0 in Ω . 由 u(z) 定義 => ν(z)≦0 for all z in Ω .  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄# -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.217.228.201
young11539 :謝謝! 12/30 23:26
herstein :nice~~~ 12/31 00:26