作者comfiture (永和好地方)
看板Math
標題Re: [微積] 一題部分積分(有請高手了)
時間Wed Jan 18 23:17:25 2012
※ 引述《incessantgas (熱力四射)》之銘言:
: 如題,拜託各位高手相救了
: x*exp(2*x)
: f(x)= ----------
: (1+2*x)^2
: 求 f(x) 的積分,答案是
: exp(2*x)
: --------
: 4(2x+1)
: 感謝感謝~~
這題比較特別, 要反向來做,並且用猜的~
從 f(x)的格式看來 似乎無法直接積分
所以就想說 r(x)
: P(x)= ----------
: t(x)
d P(x) r'(x)*t(x)- r(x)*t'(x)
-- = ---------- = f(x)
dx t(x)^2
猜 r(x)= exp(2*x)
t(x)= a*x+b
2*a*x*exp(2*x) + exp(2*x)*(2b-a)
P'(x)= ---------- = f(x)
(a*x+b)^2
x*exp(2*x)
f(x)= ----------
(1+2*x)^2
和f(x)比較係數後 可得 a=8 b=4
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.34.220.122
推 f770622 :推~ 01/18 23:23
推 incessantgas:好厲害喔,謝謝 01/18 23:28
→ comfiture :哈~其實厲害的是 版上幫我解高微的高手們XD 01/18 23:36
推 zi6ru04zpgji:補充一下 因f(x)有指數 所以積分後必有指數存在 01/18 23:41
→ zi6ru04zpgji:本題為分式 可令F(x)=exp(2x)/q(x) =∫q(x)dx 01/18 23:42
→ zi6ru04zpgji: f 01/18 23:42