看板 Math 關於我們 聯絡資訊
※ 引述《tasukuchiyan (Tasuku)》之銘言: : Let N be a normal subgroup of a finite group G. Suppose that |N|=5 and : |G| is odd. Prove that N is contained in the center of G. : 不知道該如何下手,請問有任何想法嗎?謝謝。 |N|=5, so N is cyclic. Let g be its generator. For any h in G, we must show that hgh^{-1}=g. Since N is normal, we know hgh^{-1}=g^i, i=1,2,3,4. Let o(h)=m. Note that m is an odd number. g=h^mgh^{-m}=h^{m-1}hgh^{-1}h^{-m+1}=h^{m-1}g^ih^{-m+1} =.......................=g^{i^m} So we have i^m-1=0 (mod 5), with m odd. By Fermat's theorem, i^4=1 (mod 5) we may assume m=1 or 3 (m odd iff m-4k odd) In any case, i=1 is the only solution. This impies hgh^{-1}=g^i=g. N is contained in C(G). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.249.172.70
tasukuchiyan:感謝 02/02 16:12