看板 Math 關於我們 聯絡資訊
※ 引述《tasukuchiyan (Tasuku)》之銘言: : 1.Σ(1.4...(3n-2)/(3.6...3n))^2 : 2.Σ(1.3...(2n-1)/(2.4...2n))^2 : 請問這兩題要怎麼驗證它是否收斂?有任何想法嗎?謝謝。 By using taylor expansion of log(1+x), one can see easily that (1.4...(3n-2)/(3.6...3n))^2 = O(1/n^(4/3)) and (1.3...(2n-1)/(2.4...2n))^2 = O(1/n). So, the first series converges and the 2nd diverges. For basic approach: 1 4 (3n-2) 1.let a= -- x --- x ....x-------- 3 6 3n 2 5 (3n-1) < b= -- x --- x ....x-------- 4 7 3n+1 3 6 3n < c= -- x --- x ....x-----. 5 8 3n+2 hence abc= 2/(3n+1)(3n+2), so a^2< (abc)^(2/3) = O(1/n^(4/3)). Thus, series in Q1 converges. 3*5*.......*(2n-1) 4*6*........*(2n) 2.let a= ----------------------- > b= -----------------------. 2*4*.......*(2n-2)*2n 3*5*........*(2n-1)*2n Hence a^2> ab=1/4n. Thus, series 2 diverges. -- 哪一首中文歌的歌詞有 Pasadena? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 76.94.119.209
bineapple :推 02/09 22:53
WINDHEAD :戀曲 LA 02/10 01:24
tasukuchiyan:感謝 不過,第一個方法不懂 02/10 12:32
bineapple :第一個方法把(3k-2)/3k寫成1-2/3k 再取log 02/10 13:31
tasukuchiyan:log(1-2/3k)=Σ-((2/3k)^n)/n 這樣嗎? 再來是... 02/10 18:53