看板 Math 關於我們 聯絡資訊
※ 引述《bineapple (Bineapple)》之銘言: : 設 : A = [ 6 10 ] : [ 10 17 ] : B = [ 1 0 ] : [ 0 2 ] : M = [ a b ] : [ c d ] : N = M^T : 且 ad-bc=1, a>0, NA=BM^(-1) : 求a b c d : 想請問這題有什麼比較簡潔的算法嗎? : 光是代來代去的好像會變很長一串 : 謝謝! T -1 -1 T -1 M A = B M => A = (M ) B M 令 B' = [1 0 ] [0 √2] -1 T M' = (M ) 則 ' 'T A = M B'B'M T 令 L = M'B' => A = LL 根據(http://libai.math.ncu.edu.tw/webclass/matrix/ch1_5/): T 若 A 為正定,則 A 可以被分解為如 A=LL 的形式,其中 L 為下三角矩陣且其主對角線 上的項皆為正數(且分解的方式為唯一的)。 det(A) = 2 > 0,a = 6 > 0 11 故A正定 對 A 做 Cholesky 分解 A = [1 0 ] [6 10] = [1 0] [6 0 ] [1 5/3] [5/3 1 ] [0 1/3] [5/3 1] [0 1/3] [0 1 ] = [1 0] [1 0 ] [6 0] [1 0 ] [1 5/3] [5/3 1] [0 1/6] [0 12] [0 1/6] [0 1 ] = [1 0] [1 0 ] [√6 0] [1 0] [√6 0] [1 0 ] [1 5/3] [5/3 1] [0 1/6] [ 0 √6] [0 2] [0 √6] [0 1/6] [0 1 ] = [1 0] [√6 0 ] [1 0] [√6 0 ] [1 5/3] [5/3 1] [0 1/√6] [0 2] [0 1/√6] [0 1 ] -1 T -1 (M ) B M -1 M = [√6 0 ] [1 5/3] = [√6 5√6/3] [0 1/√6] [0 1 ] [ 0 1/√6 ] 代公式, 故 M = [1/√6 -5√6/3] [ 0 √6 ] -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.173.160.251
bineapple :感謝! 又學到新的一招了 03/06 12:46