看板 Math 關於我們 聯絡資訊
以下幾個範圍 要證明K belong R 是否 compact (a) K=[0,1] (b) K=(0,1) (c) K={1/n : n belong N} U {0} 然後題目要求 using the definition of compactness 我一開始直覺只想到要用closed bounded <=> compact c那題也只單純運用 1/n的極限點=0 去證 但仔細看題目上面說 " using the definition of compactness " 就頓時猶豫起來要如何用compact本身的定義去pf 另外問一題 b(A) 交集 b(B) = b(A交集B) 此處b(A) 表 the boundary of a set A belong R^n 麻煩各位了 m(_ _)m 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.115.4.225
Sfly :c不是compact. 你用 1/n的極限點=0證了什麼? 02/13 14:00
Sfly :sorry 別理我 02/13 14:01
kane950544 :bdd&closed iff compact,a&c are compact 02/13 14:20
kane950544 :b is not.counterexample: Union (0,1-(1/n)) 02/13 14:23
kane950544 :[n=1,2,...] covers K, but doesn't have finite 02/13 14:24
kane950544 :subcovering 02/13 14:24
znmkhxrw :另外問得那題是錯的吧? A取有理數集合 B取無理數集合 02/13 14:57
ss1132 :c是compact喔 02/13 16:00
avesta :a的證明Rudin裡面關於cpt的章節有 02/13 16:15
zombiea :c) for a covering, find one which 0 lies in it 02/13 17:58
zombiea :then there's only finite many 1/n not in that set 02/13 17:59
THEJOY :c)用阿基米德就可以把某個n以後的1/n用一顆球處理掉 02/13 23:53
THEJOY :剩下n-1個最多只要n-顆球1就能蓋住,所以只要有限個 02/13 23:54