作者CFE220 (JOHN VON HERBERT)
看板Math
標題Re: [微積] 瑕積分均勻收斂
時間Thu Feb 16 09:51:04 2012
※ 引述《tasukuchiyan (Tasuku)》之銘言:
: Does the improper integral
: ∞
: f(x) = ∫exp(-sx)sins/s ds
: 0
: converge uniformly on [0,∞)?
: 請問,有什麼方法可以證明它是否均勻收斂?謝謝。
(sins)/s , s ≠ 0
Let f(s,x) = e^(-sx), g(s,x) = { for all s,x in [0,∞).
1 , s = 0
Then f( ,x) is decreasing for x in [0,∞),
and ∥f∥≦ 1 for all x,s in [0,∞).
∞ ∞
Also, ∫(sins)/s ds converges ∴ ∫g( ,x) ds converges uniformly.
0 0
Hence, by Abel test we get this improper integral converging uniformly
on [0,∞).
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.170.102.211
推 tasukuchiyan:原來有這個定理可以應用,感謝。 02/16 11:00
推 jacky7987 :跟級數和很像~ 02/16 11:58