看板 Math 關於我們 聯絡資訊
※ 引述《mqazz1 (無法顯示)》之銘言: : 1. suppose A in R^(3*3) : and det(xI - A) = x^3 - x^2 + 3x - 2, : then det(xI - A^2) = ? det(t^2I - A^2)=det(tI-A)det(tI+A) = -det(tI-A)det((-t)I-A) = (t^3-t^2+3t-2)(t^3+t^2+3t+2) =(t^3+3t)^2 - (t^2+2)^2 =t^6+2t^4+9t^2-4. so, det(xI - A^2) = x^3+2x^2+9x-4. : 2. [2^0 2^1 2^2 2^3 2^4 2^5] : [2^1 2^0 2^1 2^2 2^3 2^4] : T = [2^2 2^1 2^0 2^1 2^2 2^3] //2^3 表 2的3次方=8 : [2^3 2^2 2^1 2^0 2^1 2^2] : [2^4 2^3 2^2 2^1 2^0 2^1] : [2^5 2^4 2^3 2^2 2^1 2^0] : det(T) = ? : 請問這兩題怎麼解呢? : 謝謝 add the i th row to the 6-i th row for i=4,5,6 minus the j th cloumn from the 6-j th column for j=1,2,3. then |1+2^5 2+2^4 2^2+2^3||1-2 2-4 4-8 | det T = |2+2^4 1+2^3 2+2^2 ||2-4 1-8 2-16 | = 3^6. |2^2+2^3 2+2^2 1+2 ||4-8 2-16 1-32 | -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 76.94.119.209 ※ 編輯: Sfly 來自: 76.94.119.209 (02/23 11:48)
Sfly :台大資工近年很愛考 centrosymmetric matrix 02/23 11:56