→ Sfly :台大資工近年很愛考 centrosymmetric matrix 02/23 11:56
※ 引述《mqazz1 (無法顯示)》之銘言:
: 1. suppose A in R^(3*3)
: and det(xI - A) = x^3 - x^2 + 3x - 2,
: then det(xI - A^2) = ?
det(t^2I - A^2)=det(tI-A)det(tI+A) = -det(tI-A)det((-t)I-A)
= (t^3-t^2+3t-2)(t^3+t^2+3t+2)
=(t^3+3t)^2 - (t^2+2)^2
=t^6+2t^4+9t^2-4.
so, det(xI - A^2) = x^3+2x^2+9x-4.
: 2. [2^0 2^1 2^2 2^3 2^4 2^5]
: [2^1 2^0 2^1 2^2 2^3 2^4]
: T = [2^2 2^1 2^0 2^1 2^2 2^3] //2^3 表 2的3次方=8
: [2^3 2^2 2^1 2^0 2^1 2^2]
: [2^4 2^3 2^2 2^1 2^0 2^1]
: [2^5 2^4 2^3 2^2 2^1 2^0]
: det(T) = ?
: 請問這兩題怎麼解呢?
: 謝謝
add the i th row to the 6-i th row for i=4,5,6
minus the j th cloumn from the 6-j th column for j=1,2,3.
then
|1+2^5 2+2^4 2^2+2^3||1-2 2-4 4-8 |
det T = |2+2^4 1+2^3 2+2^2 ||2-4 1-8 2-16 | = 3^6.
|2^2+2^3 2+2^2 1+2 ||4-8 2-16 1-32 |
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 76.94.119.209
※ 編輯: Sfly 來自: 76.94.119.209 (02/23 11:48)