看板 Math 關於我們 聯絡資訊
※ 引述《oxs77 (安)》之銘言: : A,B,C,D,E 為等差數列 : A^3+6C^3+E^3 : 求 ------------ = : B^3+D^3 a, e 滿足 U^2 - 2cU + (c^2-4t^2) = 0 , t:公差 b, d 滿足 V^2 - 2cV + (c^2-t^2) =0. Let S_i=a^i+e^i - 4b^i-4d^i Then S_(n+2) - 2cS_(n+1) + c^2S_n = 0. S_(n+2) - cS_(n+1) = c(S_(n+1)-cS_n). Note that S_0=-6, S_1=-6c ==> S_n = -6c^n. Thus, (a^n+6c^n+e^n)/(b^n+d^n) = 4, if c!=0, for all n>=1. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 76.94.119.209 ※ 編輯: Sfly 來自: 76.94.119.209 (03/05 17:19) ※ 編輯: Sfly 來自: 76.94.119.209 (03/05 17:39)