看板 Math 關於我們 聯絡資訊
※ 引述《ej001 ( )》之銘言: : a, b are all positive real number : please prove : {1 + a } b+1 { a }b : {------} > {---} : {1 + b } { b } : thank you! First of all, '>' is wrong, as two sides are equal when a=b. So we are proving the case of '>=' instead. b(1+a) (b+1) <=> (--------) >= b/a a(1+b) <=> ( 1 + (b-a)/(ab+a))^(b+1) >= b/a. note that (b-a)/(ab+a) > -a/(ab+a) > -1. Thus, the result follows from the Bernoulli inequality. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 64.134.231.24
ej001 :thanks sincerely. I like your way to prove the 03/09 13:36
ej001 :problem, in fact, the problem come from 03/09 13:37
ej001 :statistical mechanics 03/09 13:37