看板 Math 關於我們 聯絡資訊
※ 引述《lookf (大俠梅花鹿ㄎㄎ)》之銘言: : 設平面E過A(0, -1, 0),B(0, 0, 1)兩點,而與平面F:y-z-2=0的一個夾角為60度, : 求平面E的方程式。 : 答:±√6x -y +z +1 =0 ^ ^ ...[Sqrt(6), -1, 1]。[0, 1, -1] = -2 Sqrt(8)*Sqrt(2)*Cos(pi/3) = 2 != -2 : 題目如上,我想請問有沒有不用截距式的做法, : 因為我試著用代點求比例假設法向量,但不知道哪個地方出錯答案一直不一樣, : 如果大家有好方法再麻煩幫我解答,感謝了! let E: ax + by + cz + d = 0, where a^2 + b^2 + c^2 = 1 ...(1) A, B to E: -b + d = 0, c + d = 0 .............................(2), (3) Inner Product: [a, b, c]。[0, 1, -1] = 1*Sqrt(2)*Cos[pi/3] .......(4) => b - c = Sqrt(2)/2 Eqs: a^2 + b^2 + c^2 = 1 ...(1) -b + d = 0 .............(2) c + d = 0 .............(3) b - c = Sqrt(2)/2 .....(4) (3) + (4): b + d = Sqrt(2)/2 .............(5) (2), (5): b = Sqrt(2)/4, d = Sqrt(2)/4 ...(6) (6) to (3) or (4): c = -Sqrt(2)/4 ........(7) (6), (7) to (1): a = +-Sqrt(3)/2 thus, a = +-Sqrt(3)/2, b = Sqrt(2)/4, c = -Sqrt(2)/4, d = Sqrt(2)/4, a, b, c, d to E: ax + by + cz + d = 0 => {+-Sqrt(3)/2}x + {Sqrt(2)/4}y + {-Sqrt(2)/4}z + {Sqrt(2)/4} = 0 => +-Sqrt(6)x + y - z + 1 = 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.125.45.39 ※ 編輯: Rasin 來自: 122.125.45.39 (03/12 20:29)
lookf :我知道問題在哪了... 太感謝您了!!! 03/13 00:07
lookf :可是好奇怪 用截距算的話答案是他給的那樣耶orz 03/13 12:31
lookf :更正 找到答案錯誤了 原po的是對的 再次謝謝你! 03/14 15:31