看板 Math 關於我們 聯絡資訊
1.Prove that an r-regular bipartite graph can be partitioned into k-regular bipartite subgraphs if k is a factor of r. 這題給人感覺很簡單理所當然,但小弟卻不知道怎麼下手, 不知道有沒有大大可以指點一下方向呢? 2.Suppose there is a homomorphism of an n-vertex graph G to H and H is vertex transitive.Prove that a(G)/│V(G)│大於等於 a(H)/│V(H)│ Ps. a(G)為 maximum indpendent number A homomorphis of a graph G to a graph H is a mapping f:V(G)->V(H) s.t. f(x)f(y) \in E(H) whenever xy \in E(H) A graph G is vertex-transitive if for every pair u,v \in V(G) there is an automorphism that maps u to v. 感謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.27.26.146
AstralBrain :第一題: 先證明k=1的時候是對的 03/14 18:19
AstralBrain :如果1對了 那我們只要隨便抓k個subgraph一組 03/14 18:21
AstralBrain :就可以湊出k-regular bipartite subgraph 03/14 18:22
AstralBrain :那k=1要怎麼證呢 其實就是證明regular bipartite 03/14 18:22
AstralBrain :graph有perfect matching. 03/14 18:23
AstralBrain :套用hall's theorem直接搞定 03/14 18:24
nendi :原來這麼簡單啊~呵呵,謝謝樓上的幫忙 03/15 11:45