看板 Math 關於我們 聯絡資訊
Let ordered pair (X,d) be a metric space, and Sr(x) is an open ball, proof: diam(Sr(x)) <= 2r. diam(S) = sup{d(x,y)|x,y belong to S} This is my provement: Let y, z belongs to Sr(x), then d(y,x) < r and d(x,z) < r -> d(y,z) <= d(y,x)+d(x,z) < 2r (triangle inequality) so every element in {d(y,z)|y,z belong to Sr(x)} is smaller than 2r... 我證明到這裡就卡住了,請問要怎麼樣才能推到結論呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.33.206.141
yusd24 :taking sup 03/19 00:15
honsan :What does you mean? 03/19 00:22
THEJOY :{d(x,y)}這些東西取了sup會有等於2r的情況出現 03/19 00:26
honsan :意思是說不等式那行有錯? 03/19 00:32
c76068 :sup{d(x,y)| x,y 屬於 Sr(x)}<= 2r 03/19 00:44
c76068 :這樣不就結束了嗎? 03/19 00:44
physicist512:It is easy to see... 03/19 01:00
Lpspace :trivial.... 03/19 09:14