作者honsan (honsan)
看板Math
標題[分析] 一題點拓
時間Sun Mar 18 23:56:51 2012
Let ordered pair (X,d) be a metric space, and Sr(x) is an open ball,
proof: diam(Sr(x)) <= 2r. diam(S) = sup{d(x,y)|x,y belong to S}
This is my provement:
Let y, z belongs to Sr(x), then d(y,x) < r and d(x,z) < r
-> d(y,z) <= d(y,x)+d(x,z) < 2r (triangle inequality)
so every element in {d(y,z)|y,z belong to Sr(x)} is smaller than 2r...
我證明到這裡就卡住了,請問要怎麼樣才能推到結論呢?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.33.206.141
推 yusd24 :taking sup 03/19 00:15
→ honsan :What does you mean? 03/19 00:22
→ THEJOY :{d(x,y)}這些東西取了sup會有等於2r的情況出現 03/19 00:26
→ honsan :意思是說不等式那行有錯? 03/19 00:32
→ c76068 :sup{d(x,y)| x,y 屬於 Sr(x)}<= 2r 03/19 00:44
→ c76068 :這樣不就結束了嗎? 03/19 00:44
推 physicist512:It is easy to see... 03/19 01:00
→ Lpspace :trivial.... 03/19 09:14