看板 Math 關於我們 聯絡資訊
T:V→V is self-adjoint over F , dim(V) = n f(v) = <Tv,v> = <[T]β[v]β,[v]β> , if β is an orthonormal basis = < A [v]α,[v]α> , if α is a basis , α={α1,...,αn} where A = [ <T(α1),α1>‧‧‧<T(α1),αn>] [ ‧ ‧ ] [ ‧ ‧ ] [ ‧ ‧ ] [ <T(αn),α1>‧‧‧<T(αn),αn>] so A*=A T is positive-definite(T>0) is defined by f(v) > 0 for all v≠0 Hence by theorem 1.T>0 iff [T]β>0 iff A>0 2.T>0 iff all eigenvalues of T are positive , denoted by e1>=...>=en>0 Since [T]β and A are both self-adjoint They can be diagonalized by an orthonormal basis and the diagonal matrix of [T]β must be [e1 0 .. 0 ] [0 e2.. 0 ] [. . . . ] [0 0 en] But What about A ?? 我們只知道A的所有eigenvalue是正的 而會與e1~en有關係嗎?? 謝謝 (A = E [T]α , E = gram determinant of {α1,...,αn} 這個條件會有幫助嗎??) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.243.156.82 ※ 編輯: znmkhxrw 來自: 111.243.156.82 (03/22 10:23)