看板 Math 關於我們 聯絡資訊
題目為 A fair coin is independently flipped n times, k times by A and n-k times by B. Show that the probability that A and B flip the same number of heads is equal to the probability that there are a total of k heads. 前半部的機率為 t=min(k,n-k) t k n-k Σ C *0.5^(a)*0.5^(k-a)*C *0.5^(a)*0.5^(n-k-a) a=0 a a 後半部的機率為 n P(X=k)=C *0.5^(k)*0.5^(n-k) k 然後兩式都有0.5^n可以消掉,也就是說要證明 t k n-k n Σ C *C =C t=min(k,n-k) a=0 a a k 有代數字下去作t=k 和t=n-k的情況等號都會成立 有試過用數學歸納法,結果卡住QQ 請問該用何種技巧呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.175.102.167
doom8199 :(1+x)^k * (1+x)^(n-k) = (1+x)^n 04/05 15:51
LPH66 :其實這題不必動到算式..只要把 A 所扔的結果給反過來 04/05 17:12
LPH66 :就可以直接證明有一一對應 於是機率相等 04/05 17:12
tokyo291 :不好意思請問把A扔的結果反過來是指@@? 04/05 21:18
yanchenglin :P(A)=P(B)=0.5 => 1-P(A)=0.5 利用這個特性吧@@ 04/05 22:41
tokyo291 :那個A B在此是指兩個人投擲@@ 04/06 00:12
※ 編輯: tokyo291 來自: 218.175.96.193 (04/06 00:24)
recorriendo :P(totoal k heads)=Σ[P(a get n-k head)P(b get k h 04/06 09:56
recorriendo :ead) (k summed from 0 to n), and then note that 04/06 09:57
recorriendo :P(a get n-k heads)=P(a get k heads) 04/06 09:57
recorriendo :二樓應該是這個意思 (抱歉英文錯很多) 04/06 09:58